Hbase scan 查询例子数据
stu 学生
列族 base 存储学生姓名,身高基本信息
列族 score 存储成绩
c1_s1 c1 班级 s1 学生编号
create 'stu','base','score'
put 'stu','c1_s1','base:name','jack'
put 'stu','c1_s2','base:name','jack2'
put 'stu','c1_s3','base:name','jack3'
put 'stu','c1_s4','base:name','jack4'
put 'stu','c2_s1','base:name','tom1'
put 'stu','c2_s2','base:name','tom2'
put 'stu','c2_s2','base:weight','70kg'
put 'stu','c2_s3','base:name','tom3'
put 'stu','c2_s3','base:weight','85kg'
put 'stu','c2_s3','base:height','1.70m'
小菜1:如何将查询的结果,输入文件
echo "scan 'stu',{LIMIT=>1}" | ./hbase shell > a.txt
小菜2:只返回2行
echo "scan 'stu',{LIMIT=>2}"
1. Hbase scan扫描全表,指定返回特定的列
hbase(main):028:0> scan 'stu',{COLUMNS => ['base:weight','base:height']}
ROW COLUMN+CELL
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
2 row(s)
Took 0.0113 seconds
2. Hbase TIMERANGE 扫描指定时间内数据,前闭后开
注意:包含等于前面时间的数据,不含等于后面时间的数据
hbase(main):028:0> scan 'stu',{TIMERANGE=>[1588153968060,1588153968207]}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
2 row(s)
Took 0.0108 seconds
3. Hbase 利用STARTROW STOPROW 扫描rowkey的范围
注意:包含等于前面key的数据,不含等于后面key的数据
hbase(main):028:0> scan 'stu',{STARTROW=>'c1_s1',STOPROW=>'c1_s3'}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
2 row(s)
Took 0.0092 seconds
4. HBase 翻转结果和时间组合排序 REVERSED
全表扫描翻转结果
scan 'stu', {REVERSED => TRUE}
和时间组合翻转
hbase(main):009:0> scan 'stu',{TIMERANGE=>[1588153968060,1588153968207],REVERSED => TRUE}
ROW COLUMN+CELL
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s1 column=base:name, timestamp=1588153968060, value=jack
5. Hbase 返回指标 ALL_METRICS or METRICS
hbase(main):011:0> scan 'stu',{ALL_METRICS => true}ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
7 row(s)
METRIC VALUE
BYTES_IN_REMOTE_RESULTS 0
BYTES_IN_RESULTS 420
MILLIS_BETWEEN_NEXTS 66
NOT_SERVING_REGION_EXCEPTION 0
REGIONS_SCANNED 1
REMOTE_RPC_CALLS 0
REMOTE_RPC_RETRIES 0
ROWS_FILTERED 0
ROWS_SCANNED 7
RPC_CALLS 1
RPC_RETRIES 0
scan 'stu',{METRICS => ['ROWS_SCANNED','RPC_CALLS']}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
7 row(s)
METRIC VALUE
ROWS_SCANNED 7
RPC_CALLS 1
Took 0.0476 seconds
6.Hbase 查询以指定开头的rowkey数据。
hbase(main):014:0> scan 'stu',{ROWPREFIXFILTER => 'c1'}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
4 row(s)
hbase(main):016:0> scan 'stu',{FILTER => "PrefixFilter('c1')"}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
4 row(s)
Took 0.0181 seconds
7.按列查找 QualifierFilter
按列查找,可以指定某一确定的列或列的范围。binary是确定的参数,substring是参数中含有的值。
scan 'stu',{FILTER => "(QualifierFilter (<,'binary:name')) AND (QualifierFilter (=,'substring:jack'))"}
8.以指定列的前缀查找数据。ColumnPrefixFilter
hbase(main):012:0> scan 'stu',{FILTER=>"ColumnPrefixFilter('nam') AND (ValueFilter(=,'substring:1') OR ValueFilter(=,'substring:3'))"}
ROW COLUMN+CELL
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
3 row(s)
Took 0.0075 seconds
这个算法,实现了查找固定列,是否包含字符1和3,返回这些列。
## 查询一个列,并查询这个列含有1和3
hbase(main):018:0> scan 'stu',{COLUMNS => ['base:name'] , FILTER=>" (ValueFilter(=,'substring:1') OR ValueFilter(=,'substring:3'))" }
ROW COLUMN+CELL
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
3 row(s)
9. 按值查找,可以指定确定的值或者值的范围。ValueFilter
hbase(main):018:0> scan 'stu',{FILTER=>"ValueFilter(=,'binary:jack')"}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
1 row(s)
10.按时间戳 TimestampsFilter
hbase(main):022:0> scan 'stu',{FILTER => "TimestampsFilter(1588153968060,1588153968207)"}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
2 row(s)
Took 0.0151 seconds
时间等于1588153968060 和 1588153968207 的记录
11. RAW指导扫描器返回所有单元格(包括删除标记和未收集的已删除单元格)。此选项不能与请求特定列相结合。默认情况下禁用。
hbase(main):024:0> scan 'stu',{RAW => true,VERSIONS => 2}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
7 row(s)
Took 0.0346 seconds
我们删除一条
delete 'stu','c1_s4','base:name'
hbase(main):027:0> scan 'stu',{RAW => true,VERSIONS => 2}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c1_s4 column=base:name, timestamp=1588153968258, type=Delete
c1_s4 column=base:name, timestamp=1588153968258, value=jack4
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
7 row(s)
Took 0.0189 seconds
显示type=Delete
12.FirstKeyOnlyFilter
一个rowkey可以有多个version,同一个rowkey的同一个column也会有多个的值, 只拿出key中的第一个column的第一个version
KeyOnlyFilter: 只要key,不要value
hbase(main):038:0> scan 'stu',FILTER => "FirstKeyOnlyFilter() AND ValueFilter(=,'binary:jack2') AND KeyOnlyFilter()"
ROW COLUMN+CELL
c1_s2 column=base:name, timestamp=1588153968114, value=
1 row(s)
Took 0.0083 seconds
13. 限制返回只要两列
hbase(main):040:0> scan 'stu', {LIMIT => 2}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
2 row(s)
Took 0.0077 seconds
14.引入Java类包
列分页过滤器:基于列进行分页,需要设置偏移量与返回数量。分页ColumnPaginationFilter
语法 ColumnPaginationFilter.new(limit, offset)
hbase(main):002:0> import org.apache.hadoop.hbase.filter.ColumnPaginationFilter
=> [Java::OrgApacheHadoopHbaseFilter::ColumnPaginationFilter]
hbase(main):040:0> scan 'stu', {FILTER =>ColumnPaginationFilter.new(3, 1)}
ROW COLUMN+CELL
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
2 row(s)
Took 0.0154 seconds
15. 查找rowkey里面包含s2
hbase(main):013:0> import org.apache.hadoop.hbase.filter.CompareFilter
=> [Java::OrgApacheHadoopHbaseFilter::CompareFilter]
hbase(main):014:0> import org.apache.hadoop.hbase.filter.CompareFilter
=> [Java::OrgApacheHadoopHbaseFilter::CompareFilter]
hbase(main):015:0> import org.apache.hadoop.hbase.filter.SubstringComparator
=> [Java::OrgApacheHadoopHbaseFilter::SubstringComparator]
hbase(main):016:0> import org.apache.hadoop.hbase.filter.RowFilter
=> [Java::OrgApacheHadoopHbaseFilter::RowFilter]
hbase(main):017:0> scan 'stu',{FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),SubstringComparator.new('s2'))}
ROW COLUMN+CELL
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
2 row(s)
Took 0.0427 seconds
16. 正则表达式查询
import org.apache.hadoop.hbase.filter.RegexStringComparator
import org.apache.hadoop.hbase.filter.CompareFilter
import org.apache.hadoop.hbase.filter.SubstringComparator
import org.apache.hadoop.hbase.filter.RowFilter
直接拷贝上面的四句话
hbase(main):018:0> import org.apache.hadoop.hbase.filter.RegexStringComparator
=> [Java::OrgApacheHadoopHbaseFilter::RegexStringComparator]
hbase(main):019:0> import org.apache.hadoop.hbase.filter.CompareFilter
=> [Java::OrgApacheHadoopHbaseFilter::CompareFilter]
hbase(main):020:0> import org.apache.hadoop.hbase.filter.SubstringComparator
=> [Java::OrgApacheHadoopHbaseFilter::SubstringComparator]
hbase(main):021:0> import org.apache.hadoop.hbase.filter.RowFilter
=> [Java::OrgApacheHadoopHbaseFilter::RowFilter]
hbase(main):027:0> scan 'stu', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^c\d+_[a-z]\d+$'))}
ROW COLUMN+CELL
c1_s1 column=base:name, timestamp=1588153968060, value=jack
c1_s2 column=base:name, timestamp=1588153968114, value=jack2
c1_s3 column=base:name, timestamp=1588153968207, value=jack3
c2_s1 column=base:name, timestamp=1588153968324, value=tom1
c2_s2 column=base:name, timestamp=1588153968367, value=tom2
c2_s2 column=base:weight, timestamp=1588154167692, value=70kg
c2_s3 column=base:height, timestamp=1588154125060, value=1.70m
c2_s3 column=base:name, timestamp=1588153968409, value=tom3
c2_s3 column=base:weight, timestamp=1588154124202, value=85kg
6 row(s)
Took 0.0385 seconds
感觉不到变化
hbase(main):036:0> put 'stu','c3_s55','base:name','Lucy'
hbase(main):037:0> scan 'stu', {FILTER => RowFilter.new(CompareFilter::CompareOp.valueOf('EQUAL'),RegexStringComparator.new('^c\d+_s55$'))}
ROW COLUMN+CELL
c3_s55 column=base:name, timestamp=1588162870203, value=Lucy
1 row(s)
Took 0.0082 seconds