区别,假设一个商品页面加载一次,会查询商品接口和广告接口各一次,那么计算tps的时候+1,计算qps的时候+2
假设一个系统最多会有7万用户,一天举行了一次直播,大家都来登录系统,在5分钟内全部完成登录系统,平均每分钟1.4万,每秒233个用户。TPS为233,假设登录过程查询2次,那么QPS 为466.
曾经做个广告监测系统,十台机器,高峰的时候一台并行3000个线程,按qps的理论,每台机器扛了最少3000个并发。那时候最多的时候一天能到一亿次PV。
响应时间:执行一个请求从开始到最后收到响应数据所花费的总体时间,即从客户端发起请求到收到服务器响应结果的时间。
响应时间RT(Response-time),是一个系统最重要的指标之一,它的数值大小直接反应了系统的快慢。
并发数是指系统同时能处理的请求数量,这个也是反应了系统的负载能力。
五、吞吐量
系统的吞吐量(承压能力)与request对CPU的消耗、外部接口、IO等等紧密关联。单个request
对CPU消耗越高,外部系统接口、IO速度越慢,系统吞吐能力越低,反之越高。
系统吞吐量几个重要参数:QPS(TPS)、并发数、响应时间。
QPS(TPS):(Query Per Second)每秒钟request/事务 数量
并发数: 系统同时处理的request/事务数
响应时间: 一般取平均响应时间
理解了上面三个要素的意义之后,就能推算出它们之间的关系:
QPS(TPS)= 并发数/平均响应时间
并发数 = QPS*平均响应时间
六、实际举例
我们通过一个实例来把上面几个概念串起来理解。按二八定律来看,如果每天 80% 的访问集中在 20% 的时间里,这 20% 时间就叫做峰值时间。
公式:( 总PV数 80% ) / ( 每天秒数 20% ) = 峰值时间每秒请求数(QPS)
机器:峰值时间每秒QPS / 单台机器的QPS = 需要的机器
1、每天300w PV 的在单台机器上,这台机器需要多少QPS?
( 3000000 0.8 ) / (86400 0.2 ) = 139 (QPS)
2、如果一台机器的QPS是58,需要几台机器来支持?
139 / 58 = 3
1、单线程QPS公式:QPS=1000ms/RT
对同一个系统而言,支持的线程数越多,QPS越高。假设一个RT是80ms,则可以很容易的计算出QPS,QPS = 1000/80 = 12.5
多线程场景,如果把服务端的线程数提升到2,那么整个系统的QPS则为 2*(1000/80) = 25,
可见QPS随着线程的增加而线性增长,那QPS上不去就加线程呗,听起来很有道理,公司也说的通,但是往往现实并非如此。
2、QPS和RT的真实关系
我们想象的QPS、RT关系如下,
实际的QPS、RT关系如下,
3、最佳线程数量
刚好消耗完服务器的瓶颈资源的临界线程数,公式如下
最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间)* cpu数量
特性:
在达到最佳线程数的时候,线程数量继续递增,则QPS不变,而响应时间变长,持续递增线程数量,则QPS开始下降。
每个系统都有其最佳线程数量,但是不同状态下,最佳线程数量是会变化的。
瓶颈资源可以是CPU,可以是内存,可以是锁资源,IO资源:超过最佳线程数-导致资源的竞争,超过最佳线程数-响应时间递增。
https://cloud.tencent.com/developer/article/1920110
https://xie.infoq.cn/article/17722ca486186020ef630e146